PMT

Question			Marking details	Marks Available
1	(a)	(i)	Horizontal velocity = $\frac{1.20}{0.60} = 2[.0 \text{ ms}^{-1}]$	1
		(ii)	$0 = u^{2} - 2 \times 9.81 \times 0.44 \text{ [correct substitution into } v^{2} = u^{2} + 2ax\text{] (1)}$ u = 2.94 [m s-1] (1) or	
			$0 = u - 9.81 \times 0.30 \text{ [correct substitution into } v = u + at] (1)$ $u = 2.94 \text{ [m s}^{-1} \text{] (1)}$ [Other solutions possible]	2
	(b)	(i)	$R = (4 + 8.64)^{1/2} (1) [\text{ecf from } (a)(i) \text{ and/or } (a)(ii)]$ R = 3.56 [m s ⁻¹] (1)	2
		(ii)	$\theta = 55.8^{\circ} \text{ ecf}$	1
	(c)	(i) (ii)	Force of gravity on earth due to grasshopper $F = 3 \times 10^{-5} \times 9.81 = 2.9 \times 10^{-4}$ [N] Accept 0.3 m[N]	1 1
	(d)		←──	1
			Question 1 Total	[9]
2	(a)		VA^{-1} and $WA^{-2} = 2 \times (1)$	2
	<i>(b)</i>	(i)	$V = 0.01 \times 450 = 4.5 [V]$	1
		(ii)	12 V - 4.5 V [ecf] = 7.5 [V]	1
		(iii)	$R = \frac{7.5}{0.01} (1 \text{ for correct use of } 7.5 \text{ or ecf}) = 750 [\Omega] (1) \text{ or correct}$ alternative	2
		(iv)	$\frac{1}{750} = \frac{1}{900} + \frac{1}{R} (1) \text{ (substitution)}$ $R_{\text{variable resistor}} = 4500 [\Omega] (1)$	2
			Alternative solution to (iii) and (iv)	
			<i>I</i> through 900 $\Omega = \frac{7.3}{900} = 0.0083 [A] (1)$	
			<i>I</i> through variable resistor = 0.0017 [A] (1) 7.5 = 4500 [O] (1)	
			$K_{\text{variable resistor}} = \frac{1}{0.0017} = 4500 [\Omega] (1)$ Use of resistors in parallel formula to find total parallel resistance =	
			$750 [\Omega] (1)$	

Question	Marking details	Marks Available
(C)	[No mark for stating circuit resistance decreases] Current in circuit increases (1) [accept explanation based on potential divider. Hence pd across 450Ω increases (1) Hence pd across 900Ω decreases (1) this mark can't be awarded unless it is correctly substantiated Alternative solutions: Resistance of parallel combination decreases (1) pd across parallel combination decreases (1) pd across 900 Ω decreases (1) OR current through the variable resistor increases (1) current through the 900 Ω decreases (1) pd across the 900 Ω decreases (1)	3
	Question 2 total	[11]

Question				Marking details	Marks Available
3	<i>(a)</i>	(i)		[Free] electrons forced to move by applied pd (Need a reference to drift velocity or electron flow but does not need to be explicitly stated) (1) They collide with atoms/nuclei/ions/lattice of the wire (1) don't accept particles or molecules	2
		(ii)		Power = $\frac{1.8}{60}$ = 0.03 [W] (1) $R = \frac{0.03(\text{ecf})}{1.6^2} = 0.0117 [\Omega] (1)$ Alternative solution possible for the first 2 marks using $V = \frac{W}{Q}$ and	
				$R = \frac{V}{I}$ $\rho = \frac{0.0117 \times 2 \times 10^{-6}}{0.4} (1) [\text{ecf on } R]$ $= 5.9 \times 10^{-8} [\Omega \text{ m}] (1)$	4
	<i>(b)</i>	(i)		<i>l</i> or (vt) [accept v if stated dist travelled in 1 s]	
				Number of free electrons = $nAvt$ [or nAl] (1) Total change = $nAvte$ [or $nAle$] (1) $I = \frac{nAvte}{t}$ with cancelling shown [or $\frac{nAle}{t}$, where $\frac{l}{t} = v$ shown] (1)	
				Volume defined either from diagram [e.g. A and l labelled as shown] or in body of derivation [e.g. vol = Al] and n identified correctly– for the first mark	4
		(ii)		$1.6 = 6.4 \times 10^{28} \times 2 \times 10^{-6} \times v \times 1.6 \times 10^{-19} $ (1: substitution) $v = 7.8 \times 10^{-5} $ [m s ⁻¹] (1)	2
		(iii)	(I) (II) (III)	less than 1.6 A identified/circled (1) the same as identified/circled (1) half identified/circled (1)	3
				Question 3 Total	[15]

Question			Marking details	Marks Available
4	(a)	(i)	Water bath or method of heating shown. Wire [coiled or uncoiled] shown (1). Voltmeter and ammeter and power supply correctly connected or ohmmeter only shown (1) Thermometer clearly identifiable. (1) Subtract 1 mark for poorly drawn diagrams. Method of cooling water to 0 °C not credited here.	3
		(ii)	<u>Method</u> of cooling water to 0 °C (1) [Can be credited from (i)] Resistance values taken [or <i>V</i> and <i>I</i> values taken and <i>R</i> calculated](1) at different temperatures [minimum 5 implied or implication that a number of temperatures considered] (1) Method to reduce experimental error/ ensure accuracy e.g. water stirred/ resistance of leads/heat slowly/remove heat to allow temperature to settle (1) Accept repeat the experiment again or obtain readings whilst cooling down or using a digital thermometer. Don't accept just repeat readings. Graph of <i>R</i> vs θ drawn (1)	5
	<i>(b)</i>	(i)	[-163 °C] is the temperature at which <u>a sudden decrease in resistance</u> occurs and the metal [alloy] (1) becomes a <u>superconductor</u> or resistance becomes zero (1)	2
		(ii)	Liquid nitrogen [Accept liquid helium, liquid oxygen, liquid hydrogen] Question 4 Total	1 [11]

Question			Marking details	Marks Available	
5	<i>(a)</i>	(i)		$power = \frac{work \text{ done or energy transferred}}{time} [Accept rate of doing work/ rate of energy transfer]}$	1
		(ii)		kg m s ⁻² × m × s ⁻¹ (1) [Evidence of full correct methodology] kg m ² s ⁻³ (1)	2
	(b)	(i)		$E_p = 70 \times 9.81 \times 215 (1)$ [= 147 641 J] $E_k = \frac{1}{2} (70)(35)^2 (1)$ [= 42 875 J] $E_{\text{lost}} = 147 641 - 42 875 (1)$ [= 104 766](ecf on both E_p and E_k) $F = \frac{104766}{1600} = 65.5 [N] (1)$ (ecf on E_{lost}) Alternative solution: using $v^2 = u^2 + 2ax$	4
		(ii)		$P = \frac{104766}{46} \text{ ecf } (1)$ = 2 277 J s ⁻¹ or W (1) UNIT mark	2
				Question 5 total	[9]
6	(a)			Point d (1) F (1) Moment = Fd (1) [award only if clear diagram shown] / if no right angle in diagram then perpendicular must be included in definition	2
	<i>(b)</i>	(i)		$(F (\sin 40^{\circ})(1) \times 0.4) (1) = ((12 \times 0.9) + (22 \times 1.8)) (1)$ F = 196 [N] shown	3
		(ii)	(I) (II) (III)	Vertical component of force in strut = 126 [N] (1) Accept 128 [N] or 129 [N] if $F = 200$ N is used. Vertical downward arrow shown at hinge. (1) Vertical force on bar due to hinge = 92 [N] (1) ecf	3
				Question 6 Total	[8]

_		
E		Т
Г	- IVI	

Question				Marking details	Marks Available
7	(a)	(i)		[Vector] distance between two locations measured along the shortest path joining them.	1
		(ii)	(I)	Time for outward journey = 7.5 hrs and homeward journey = 5 hrs calculated (1) 600	
				Speed = $\frac{600}{12.5}$ (1) = 48 [km h ⁻¹](1)	3
			(II)	$0 \text{ km h}^{-1}(1)$ displacement = 0 stated (1)	2
	(b)	(i)		Suitable tangent drawn (1) = 0.15 (accept range 0.12 to 0.18) (1) $\Sigma F = 1.2 \times 10^6 \times 0.15 = 180[\text{kN}]$ (1) [ecf on gradient value] ΣF range = 144 kN to 216 kN	3
		(ii)		Line (or time axis) labelled at \geq 92 or 94 seconds	1
		(iii)		Constant speed (1) Driving force balanced [equal to] resistive forces (1) [Do not accept $\Sigma F = 0$]	2
	(c)	(i)	(I)	$F = \frac{Wx}{t}$ and $\frac{x}{t}$ shown to be = v	1
			(II)	v (from graph) = 17.2 m s ⁻¹ (1) $F = \frac{4.5 \times 10^{6}}{17.2} = 262[\text{kN}] (1)$	2
		(ii)		$180000 = 262000 - F_{\text{drag}}$ (1) [ecf on both forces] $F_{\text{drag}} = 82$ [kN] (1)	2
				Question 7 Total	[17]