\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& Marking details \& Marks Available \\
\hline 1 \& (a)

(b)

(c)

(d) \& \begin{tabular}{l}
(i) \\
(ii) \\
(i) \\
(ii) \\
(i) \\
(ii)

 \&

$$
\text { Horizontal velocity }=\frac{1.20}{0.60}=2\left[.0 \mathrm{~ms}^{-1}\right]
$$

$$
0=u^{2}-2 \times 9.81 \times 0.44\left[\text { correct substitution into } v^{2}=u^{2}+2 a x\right] \text { (1) }
$$

$$
u=2.94\left[\mathrm{~ms}^{-1}\right] \text { (1) }
$$ \\

or \\
$0=u-9.81 \times 0.30$ [correct substitution into $v=u+a t]$ (1)

$$
u=2.94\left[\mathrm{~ms}^{-1}\right](1)
$$ \\

[Other solutions possible]

$$
\begin{aligned}
& R=(4+8.64)^{1 / 2}(1)[\text { ecf from }(a)(\mathrm{i}) \text { and } / \text { or }(a)(\text { (ii })] \\
& R=3.56\left[\mathrm{~m} \mathrm{~s}^{-1}\right](1) \\
& \theta=55.8^{\circ} \text { ecf }
\end{aligned}
$$ \\

Force of gravity on earth due to grasshopper

$$
F=3 \times 10^{-5} \times 9.81=2.9 \times 10^{-4}[\mathrm{~N}] \text { Accept } 0.3 \mathrm{~m}[\mathrm{~N}]
$$ \\

Question 1 Total

 \&

2 \\
2 \\
1 \\
1
1 \\
1 \\
[9]
\end{tabular} \\

\hline 2 \& | (a) |
| :--- |
| (b) | \& | (i) |
| :--- |
| (ii) |
| (iii) |
| (iv) | \& | $\begin{aligned} & \mathrm{V} \mathrm{~A}^{-1} \text { and } \mathrm{W} \mathrm{~A}^{-2} \quad 2 \times(1) \\ & V=0.01 \times 450=4.5[\mathrm{~V}] \\ & 12 \mathrm{~V}-4.5 \mathrm{~V}[\mathbf{e c f}]=7.5[\mathrm{~V}] \\ & R=\frac{7.5}{0.01}(1 \text { for correct use of } 7.5 \text { or ecf })=750[\Omega](1) \text { or correct } \\ & \text { alternative } \\ & \frac{1}{750}=\frac{1}{900}+\frac{1}{R} \quad(1)(\text { substitution }) \\ & R_{\text {variable resistor }}=4500[\Omega](1) \end{aligned}$ |
| :--- |
| Alternative solution to (iii) and (iv) |
| I through $900 \Omega=\frac{7.5}{900}=0.0083[\mathrm{~A}]$ (1) |
| I through variable resistor $=0.0017$ [A] (1) $R_{\text {variable resistor }}=\frac{7.5}{0.0017}=4500[\Omega]$ |
| Use of resistors in parallel formula to find total parallel resistance $=$ 750 [Ω] (1) | \& | 2 |
| :--- |
| 1 |
| 1 |
| 2 |
| 2 | \\

\hline
\end{tabular}

Question		Marking details	Marks Available
(c)	[No mark for stating circuit resistance decreases] Current in circuit increases (1) [accept explanation based on potential divider. Hence pd across 450Ω increases (1) Hence pd across 900Ω decreases (1) this mark can't be awarded unless it is correctly substantiated Alternative solutions: Resistance of parallel combination decreases (1) pd across parallel combination decreases (1) pd across 900Ω decreases (1) OR current through the variable resistor increases (1) current through the 900Ω decreases (1) pd across the 900Ω decreases (1) Question 2 total	3	

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& Marking details \& Marks Available \\
\hline 4 \& (a) \& (i) \& \begin{tabular}{l}
Water bath or method of heating shown. Wire [coiled or uncoiled] shown (1). \\
Voltmeter and ammeter and power supply correctly connected or ohmmeter only shown (1) \\
Thermometer clearly identifiable. (1) \\
Subtract 1 mark for poorly drawn diagrams. Method of cooling water to \(0^{\circ} \mathrm{C}\) not credited here. \\
Method of cooling water to \(0^{\circ} \mathrm{C}\) (1) [Can be credited from (i)] Resistance values taken [or \(V\) and \(I\) values taken and \(R\) calculated](1) ..at different temperatures [minimum 5 implied or implication that a number of temperatures considered] (1) \\
Method to reduce experimental error/ ensure accuracy e.g. water stirred/ resistance of leads/heat slowly/remove heat to allow temperature to settle (1) Accept repeat the experiment again or obtain readings whilst cooling down or using a digital thermometer. Don't accept just repeat readings. Graph of \(R\) vs \(\theta\) drawn (1)
\end{tabular} \& 3

5 \\

\hline \& (b) \& (i) \& | $\left[-163^{\circ} \mathrm{C}\right]$ is the temperature at which a sudden decrease in resistance occurs and the metal [alloy] (1) |
| :--- |
| ...becomes a superconductor or resistance becomes zero (1) | \& 2 \\

\hline \& \& (ii) \& Liquid nitrogen [Accept liquid helium, liquid oxygen, liquid hydrogen] \& 1 \\
\hline \& \& \& Question 4 Total \& [11] \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Question} \& Marking details \& Marks Available \\
\hline 5 \& (a) \& (i)
(ii)
(i)

(ii) \& \& | $\begin{aligned} & \text { power }=\frac{\text { work done or energy transferred }}{\text { time }} \\ & \text { doing work/ rate of energy transfer] } \\ & \text { [Accept rate of } \\ & \mathrm{kg} \mathrm{~m} \mathrm{~s}^{-2} \times \mathrm{m} \times \mathrm{s}^{-1} \quad(1) \text { [Evidence of full correct methodology] } \\ & \mathrm{kg} \mathrm{~m}^{2} \mathrm{~s}^{-3}(1) \\ & \\ & E_{p}=70 \times 9.81 \times 215(1) \\ & {[=147641 \mathrm{~J}]} \\ & E_{k}=1 / 2(70)(35)^{2}(1) \\ & {[=42875 \mathrm{~J}]} \\ & E_{\text {lost }}=147641-42875(1)[=104766]\left(\text { ecf on both } E_{p} \text { and } E_{k}\right) \\ & F=\frac{104766}{1600}=65.5[\mathrm{~N}](1)\left(\text { ecf on } E_{\text {lost }}\right) \end{aligned}$ |
| :--- |
| Alternative solution: using $v^{2}=u^{2}+2 a x$ $\begin{aligned} P & =\frac{104766}{46} \operatorname{ecf}(1) \\ & =2277 \mathrm{Js}^{-1} \text { or } \mathrm{W}(1) \text { UNIT mark } \end{aligned}$ |
| Question 5 total | \& [9] \\

\hline 6 \& (a) \& (i)

(ii) \& \begin{tabular}{l}
(I) \\
(II) \\
(III)

 \&

Moment $=F d$ (1) [award only if clear diagram shown] / if no right angle in diagram then perpendicular must be included in definition

$$
\begin{aligned}
& \left(F\left(\sin 40^{\circ}\right)(1) \times 0.4\right)(1)=((12 \times 0.9)+(22 \times 1.8))(1) \\
& F=196[\mathrm{~N}] \text { shown }
\end{aligned}
$$ \\

Vertical component of force in strut $=126[\mathrm{~N}]$ (1) \\
Accept $128[\mathrm{~N}]$ or $129[\mathrm{~N}]$ if $F=200 \mathrm{~N}$ is used. \\
Vertical downward arrow shown at hinge. (1) \\
Vertical force on bar due to hinge $=92[\mathrm{~N}]$ (1) ecf \\
Question 6 Total
\end{tabular} \& 2

3
3
3 \\
\hline
\end{tabular}

Question				Marking details	Marks Available
7	(a)	(ii)	(I)	[Vector] distance between two locations measured along the shortest path joining them. Time for outward journey $=7.5 \mathrm{hrs}$ and homeward journey $=5 \mathrm{hrs}$ calculated (1) $\text { Speed }=\frac{600}{12.5}(1)$ $=48\left[\mathrm{~km} \mathrm{~h}^{-1}\right](1)$	3
			(II)	$\begin{aligned} & 0 \mathrm{~km} \mathrm{~h}^{-1}(1) \\ & \text { displacement }=0 \text { stated (1) } \end{aligned}$	2
	(b)	(i)		```Suitable tangent drawn (1) =0.15 (accept range 0.12 to 0.18) (1) \SigmaF=1.2 * 10 6 < 0.15=180[kN] (1) [ecf on gradient value] \SigmaFrange = 144 kN to 216kN```	3
		(ii)(iii)		Line (or time axis) labelled at ≥ 92 or 94 seconds	1
				Constant speed (1) Driving force balanced [equal to] resistive forces (1) [Do not accept $\Sigma F=0]$	2
	(c)	(i)	(I)(II)	$F=\frac{W x}{t} \text { and } \frac{x}{t} \text { shown to be }=v$	1
				$\begin{aligned} & v(\text { from graph })=17.2 \mathrm{~m} \mathrm{~s}^{-1}(1) \\ & F=\frac{4.5 \times 10^{6}}{17.2}=262[\mathrm{kN}] \end{aligned}$	2
		(ii)		$180000=262000-F_{\text {drag }}(1)$ [ecf on both forces] $F_{\text {drag }}=82[\mathrm{kN}](1)$	2
				Question 7 Total	[17]

